Apple представила форк TensorFlow для чипа M1

0
79

Apple представила форк TensorFlow для чипа M1

Apple выпустила форк TensorFlow, среды разработки Google для искусственного интеллекта и машинного обучения, оптимизированную для компьютеров Mac Intel и Mac на новом чипе M1. Apple заявляет, что версия TensorFlow 2.4 на платформе ML Compute в macOS Big Sur позволяет разработчикам использовать ускоренное обучение процессоров и видеокарт на 8-ядерном CPU и 8-ядерном GPU M1.

Обучение сложных моделей искусственного интеллекта может быть непомерно дорогим для разработчиков. Google потратила около $6,9 млн на обучение BERT, модели двунаправленного преобразователя для 11 задач обработки естественного языка.

Новый пакет TensorFlow, оптимизированный для Mac, обещает снизить порог входа, позволяя предприятиям обучать и развертывать модели легче и дешевле, чем раньше.

TensorFlow 2.4 объединяет слои нейронной сети, выбор соответствующего типа устройства, а также компиляцию и выполнение графа в виде задач, которые ускоряются BNNS на CPU и шейдерами Metal Performance на GPU. Apple утверждает, что пользователи TensorFlow могут пройти обучение на 13-дюймовом MacBook Pro с M1 в 7 раз быстрее.

Apple представила форк TensorFlow для чипа M1

Внутренние тесты Apple показывают, что популярные модели, такие как MobileNetV3, обучаются всего за 1 секунду на 13-дюймовом MacBook Pro с M1 и новым выпуском TensorFlow. Это вдвое быстрее процесса обучения на 13-дюймовом MacBook Pro с процессором Intel, работающем со старым пакетом TensorFlow.

Apple представила форк TensorFlow для чипа M1

Более того, компания утверждает, что обучение алгоритму переноса стиля на Mac Pro 2019 года на базе Intel можно выполнить примерно за 2 секунды по сравнению с 6 секундами в неоптимизированных версиях TensorFlow.

Технический менеджер программы Google Панкадж Канвар и руководитель отдела маркетинга продуктов Фред Алкобер отмечают, что эти улучшения в сочетании с возможностью разработчиков Apple запускать TensorFlow на iOS через TensorFlow Lite «продолжают демонстрировать широту и глубину TensorFlow в поддержке высокопроизводительного выполнения машинного обучения на оборудовании Apple».

В ближайшем будущем компании планируют начать интеграцию версии TensorFlow 2.4 в главную ветку.

Тем не менее, пока MacBook Air, MacBook Pro и Mac mini на новом чипе М1 с ARM-архитектурой пока не хватает нативного софта и сред разработки. Многие проекты с открытым исходным кодом еще не перестроились на работу с Arm64.